
Journaf of Chromatography, 216 ( 1981) 23-33 
Efsevier Scientiiic Publishing Company, Amsterdam - Printed in The Netherlands 

CHROM. 14,057 

NON-LINEAR CALIBRATION BY CUBIC SPLINES IN GEL PERMEATION 
CHROMATOGRAPHY 

LARS ANDERSSON 

Deparmenr of Pilysical Chemistry, Chahners Insrirute of Technology and Uniwrsify of Gothenburg, S-41 2 96 
Gothenburg (Sweden) 

(Received April l&h, 1981) 

SUMMARY 

A general method for calibration in gel permeation chromatography is pro- 
posed, based on a least squares approximation of the calibration curve by cubic 
splines using polymer standard(s) with one or more known molecular weight aver- 
ages. The calibration using polymer standards having broad molecular weight distri- 
butions with known M,., and/or M, is discussed and compared with similar methods. 

The effectiveness of cubic splines for the approximation of the calibration 
curve is a consequence of the inherent local properties and smoothness of the model. 
The natural cubic spline model with equal intervals is the preferred choice for non- 
linear calibration. The linear calibration curve is obtained as a special case when in- 
formation is sparse. 

INTRODUCTION 

In order to determine the molecular weight distribution of polymers by gel 
permeation chromatography (GPC), one must relate the molecular weight to the 
elution volume, since the differential weight distribution obtained experimentally is a 
function of the volume. The calibration method for determining this relation is nor- 
mally based on the GPC measurements of a number of polymer standards having one 
or more known molecular averages. Assuming that a calibration curve between mo- 
lecular weight and elution volume can be uniquely defined for the standard(s) used, 
this curve could be approximated by a mathematical function, M(v), according to a 
least squares procedure. The values of the parameters, c, in the model are estimated 
by minimizing the weighted square of the deviations between the observed (GPC 
determined) averages, Mip, and the expected (absolutely determined) averages, My’, 
for the molecular weight averages i of standard k: 

X2 = k 5 (Mi, - M$J’/M$‘, 
k=l i=l 

However, since the sum of the squares could be made arbitrarily low by in- 
creasing the number of parameters, a low X2 value is not a sufficient criterion for 
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selecting the appropriate number of parameters in the model or for comparing dif- 
ferent models proposed for the calibration curve. Furthermore, the possibility of 

unequal reliability of the different absolute methods for measuring the known molec- 
ular weight averages has not been taken into account. 

For an evaluation of cubic splines as an approximation of the calibration 
curve, a more general procedure for the least squares approximation has therefore 
been adopted. The estimate of the parameters, c, which minimizes the reduced X2 
value 

X2 = l/(nN1 - q) i 5 C”ik - MZJ2/Sf 
k=l i=l 

is accepted, where nrrz is the total number of averages used and q the number of 
parameters. The weighting factors, s:, are equal to the sum of the variances for the 
GPC determined and absolute molecular weight averages, i. Assuming that any sys- 
tematic error has properly been accounted for, X2 should be approximately unity if a 
large number of standards with known molecular weight averages are available. In 
practice, however, the number of available polymer standards with known molecular 
weight averages are always limited, and the number of parameters, q, is then chosen 
so as to minimize X2. For cases where the variances of the observed and expected 
averages are known only approximately or not at all, the weighting factors should be 
equal to MyA to provide equal relative weight over the calibration range. 

Calibration curve models 
A theoretical model based on diffusion has been derived by Yau and Malone’ 

for the relation between the molecular weight and the elution volume: 

Y = cl + c2 {l/&G [l - exp(-ti2)] + erfc (+)} 

where 

This equation has been used for calibration with standards having both narrow and 
broad molecular weight distributions2S3. The unique advantage of this model is the 
connection between the parameters and the separation process, where cr represents 
the exclusion volume, v,,, and c1 + c, the total volume, v,. If one has a sufhcient 
number of well-defined polymer standards covering the calibration range of the pack- 
ing material, this physical significance of the parameters should be confirmed if the 
model is an adequate representation of the calibration curve. 

For cases where there are only a small number of well-characterized standards 
or where the GPC instrument employs a series of columns packed with materials of 
different pore sixes, the theoretical model may be unsatisfactory and empirical models 
often are appropriate. A common example is the fitting of a polynomial to experi- 
mental data in order to predict the separation response as a function of two or more 
variablc&’ i . 
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A modified polynomial model for the calibration curve has also been proposed 

M = c5 + exp (c, + c2v + c3vZ + c,v3) 

and tested with standards having broad molecular weight distributions”. 
As the calibration graph has a slightly curved part surrounded by a sharp rise and 

a sharp decrease, it is in general not suited for approximation by a single polynomial. 
The polynomial representation is more or less limited to the linear region. The poly- 
nomial fitting is also complicated by strong interaction between parameters, which 
leads to a progressively poorer least squares approximation as the number of param- 
eters increases_ A more appropriate function is then the orthogonal polynomial 
which, while mathematically equivalent to the common polynomial, is unaffected by 
such interactions. A suitable choice is the Legendre polynomial, which is orthogonal 
with a weighting factor of unity over theclosed interval - 1 d s d 1 .Thecoordinate range 
must therefore be defined in accordance with this interval and the calibration curve 
approximated by the function 

In M = 5 ci Pi (s) 
i=l 

where 

s = (2v - v. - V,)/(V, - vo) 

and Pi (x) is the Legendre polynomial_ 
Linear fitting is most often applied to calibration curves since the logarithm 

of the molecular weight of standards having sufficiently narrow distributions yields 
an almost linear calibration curve versus peak elution volume for certain column sets. 
As an alternative to the use of higher-order polynomials for non-linear calibration, the 
approximation of a non-linear calibration curve by straightline segments has been 
proposed”. However, since this approach will not give continuous differential weight 
distributions, it is of questionable value for non-linear calibration. The treatment 
of curves as composed of segments of straight lines can nevertheless be extended to 
represent curves composed of segments of polynomials of an arbitrary degree. The 
most useful of these are the cubic splines, defined according to Ahlberg et ~1.‘~. 

For an interval v,, < s c v,, subdivided by a mesh 

A : v. = so < x1 < _ _ _ . . _ < _I-” = l’* 

an associated set of ordinates is prescribed: 

y: Yo, _v , ) _ _ - _ - - ) Y” 

Then the function S, (s), which is continuous together with its first and second 
derivatives on v, to v,, coincides with a cubic in each subinterval Sj-1 < s 
< xjo’= 1,3,._., N) and satisfies S, (s) = _vi (j = 0, 1, . . _, N), is said to be a spline 
with respect to the mesh A. For a cubic spline defined in this way there are 4N defining 
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constants: requiring derivatives of orders 0, 1, 2 to be continuous at each interior 
mesh point accounts for 3 (N - 1) degrees of freedom, leaving N + 1 to interpolation 
at the mesh points and two YY! conditions at x = _u, and s = +_ If the end 
conditions are chosen such thaI ine second derivative is equal to zero at s = _r, and s 
= or,, a natural cubic spline is obtained. Among all the cubic splines that interpolate 
the prescribed ordinates, only the natural cubic spline minimizes the integral: 

The natural cubic spline thus minimizes curvature and gives a smooth representation 
of the calibration curve. For N = 1 it reduces to a linear representation of the 
calibration curve, and the choice of end conditions is based on the fact that this curve 
represents the natural choice when the information is limited, as is also the case for 
the ends of the calibration curve. 

The unique advantages of the cubic spline model for the approximation of the 
calibration curve are due to the smoothness and local properties of the model. Even if 
the spline is a global curve in the sense that alteration of a single ordinate affects the 
spline throughout the interval from _x, to _Y,, the effect declines rapidly as the distance 
from the altered ordinate increases. From a numerical viewpoint, this means that if 
one chooses the ordinates as parameters for the estimation, the parameters are nearly 
independent of each other. A further consequence of the local property is that the 
cubic spline model is a better approximation of the calibration curve for a general 
multicolumn set, where the calibration curve comprises contributions from the dif- 
ferent packing sizes, each covering a separate range of the calibration curve. Also, the 
smoothness of the spline function gives it a sign&ant advantage over higher order 
po!ynomials when dealing with sparse data. The term sparse is here loosely defined as 
meaning that the number of parameters is more or less equal to the number of known 
molecular weight averages. In this case the cubic spline model is less vulnerable to the 
wiggles and oscillations of a higher-order polynomial, due to the sacrificing of con- 
tinuity of higher derivatives for the smoothness of the second derivative_ 

EXPERIMENTAL 

Standards 
Seven well-characterized broad dextran standards (Pharmacia, Uppsala, 

Sweden) were used for the calibration. The M, values of these standards were de- 
termined by end-group analysis by the Somogyi copper phosphate method and M, 
values by light-scattering measurements12_ 

GPC procedure 
The GPC measurements were performed with a glass column (1000 x 6.3 mm 

I.D.) slurry packed with Hydrogel VI (particle size ~37 ,um) (Waters Assoc.). The 
average plate count during the runs was 6000 plates per m as measured with methanol 
at a flow-rate of 6 ml/h (20 ml/cm2 - h). 

The 0.25ml degassed samples contained 2 mg/ml of the dextran standards and 
1 &nl of methanol in dilute H,SO,, pH = 3. The methanol was added as an internal 
standard. 
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Calibration curve models 

Six models were used: 

(I) Theoretical model based on diffusion 

(II) Legendre polynomials 
(III) Polynomials 

(IV) Modified polynomial model 

(V) Natural cubic spline model 

(VI) Cubic spline model 

(Diffusion model) 
(Legendre model) 
(Polynomial I model) 
(Polynomial II model) 
(Spline I model) 
(Spline II model) 

The computer programs for the evaluation of the calibration curve models 
were written in Fortran IV. To simplify them for the non-linear least squares esti- 
mation, a standard finite difference Levenberg-Marquardt subroutine ZXSSQ sup- 
plied by IMSL (International Mathematical and Statistical Libraries, Houston, TX, 
U.S.A.) was used. The subroutines for the cubic spline interpolation and evaluation 
were also based on the IMSL subroutines ICSICU and ICSEVU. Since these IMSL 
subroutines are standard programs, any similar subroutines from a larger library of 
subroutines could probably be used instead. 

RESULTS AND DISCUSSION 

During the preliminary runs it became evident that distilled water was un- 
satisfactory as eluent since some of the dextran standards gave a high-molecular- 
weight fraction. Since the packing material as well as the dextran standards contains a 
small number of ionic sites (presumably carboxylate groups judging from the inform- 
ation from the manufacturers), an ionic exclusion effect is probably responsible for 
these distributions_ The normal procedure for obviating such an effect is to use an 
eluent with a sufficiently high ionic strength. Since a salt solution with an ionic 
strength of ~0.02 also gave small salt peaks at the total volume, an eluent of 0.5 mM 
H2S04 was used, which gave chromatograms identical to those obtained by the 
normal procedure, except for the absence of any salt peak at the total volume_ The 
successful use of this eluent at pH = 3 is due to the fact that the carboxylate groups 
are almost uncharged at this pH. 

As an estimate of the precision of the absolute methods, data have been taken 
from Table I in ref. 12. From this table it can be concluded that, whereas the relative 
standard deviation is approximately independent of the molecular weight, a dis- 
crepancy is observed between the two absolute methods. A pooled value of the vari- 
ance for each method can then be obtained from 

where pi is the number of replicates in a sample and n the number of samples. 
Excluding the first entry in the table, as this standard is outside the range of the 
commercially available dextran standards, a relative standard deviation of 4.8 o/0 for 
Ici, and 2.9% for &fW is obtained_ 

Three series of the standards were run in random order in each series, so that 
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the variance of the GPC measurements could be evaluated. The chromatograms were 
compensated for any flow-rate variation from run to run by the internal methanol 
standard. From the results given in Table I the variation of the relative standard 
deviation with the molecular weight seems essentially random, and an estimated 
relative standard deviation cf 1.2 0A for M, and 1 .O oA for M, can be obtained from 
the mean value of the variances. In comparison with the values of the relative stan- 
dard deviations for the absolute methods of 4.8 % for M, and 2.9 % for M,, the GPC 
contribution to the total variance is small and constitutes only 6 y0 and 11% respec- 
tively. The calibration curve models can therefore be evaluated by one of the three 
series of GPC measurements, since the deviations between the measured and known 
molecular weight averages are approximately determined by the random uncertainty 
in the measurements of the known averages. In general, however, this may not be the 
case, and it is then essential to take this contribution into account in the calibration_ 

TABLE I 

RELATIVE STANDARD DEVLATIONS (%) OF MOLECULAR WEIGHT AVERAGES AS 
OBTAINED FOR DEXTRAN STANDARDS FROM THREE MEASUREMENTS 

TIO TZO T40 T 70 TllO T150 I250 

sbw 0.71 1.41 0.60 1.48 1.70 0.15 1.69 
J(lcJ*) 0.49 1.09 0.39 0.59 I.66 0.47 1.58 

* The number in the code for each standard refers to approximately MJ1000. 

The results of the calibration with known A(, and/or M, for the different 
calibration curve models are given in Table II. Since the basic assumption of the GPC 
separation process is that the molecules are eluted in the inverse order of their hydro- 
dynamic volume or the molecular weight for homopolymers, the calibration curve 
model must have a first derivative less than zero to be an acceptable representation of 
the calibration curve. When the number of parameters in the models increased this 
condition was not met, and these solutions must therefore be excluded. For the 
numerical method the main requirements of the models for non-linear estimation are 
efficient convergence, minimal parameter interaction and easy choice of the initial 
guesses for the parameters_ 

The natural cubic spline model (Spline I model) could be considered as fulfil- 
ling all these requirements. In all runs, the non-linear least squares fit could be com- 
puted in single precision* with a minimum number of functional evaluations. This 
effectiveness is a consequence of the inherent advantage of the cubic spline method 
for the approximation and the choice of the ordinates as parameters. When the 
ordinates are uniformly located over the elution volume range, minimal parameter 
interaction is obtained. Since the values of the ordinates are of the same magnitude, 
no scaling error will occur, and the number of sign&ant digits is approximately the 

l For an IBM computer, “single precision” is 4 bytes of storage or approximately 7.2 decimal digits 
for a variable; “double precision” is 8 bytes of storage for a variable_ 



NON-LINEAR CALIBRATION IN GPC 29 

TABLE II 

X’ VALUES FOR THE CALIBRATION CURVE MODELS WITH CALIBRATION BASED ON Ici, 
AND/OR icfw 

The optimal least squares fits were obtained with four parameters and are indicated by the italicized X2 
values. 

M. JW, 4 Spline I Spline ZZ Polynomial Z Legendre Po~vnomial II Di/lusion 

x x 3 7.166 7.166 

x x 3 5.020 4.611 
x x 4 0.953 0.796 
x x 5 0.957 0.883 

x - 2 1.591 1.591 
x - 3 1.173 1.185 
x - 4 0.823 0.850 
x - 5 1.164 1.168’ 

- x 2 14.29 
- x 3 4.823 
- x 4 2.195 
- x 5 x770- 

14.29 
3.762* 
1.762f 
2.433*.** 

7.166 
4.61 If 
0.796* 
0.884* 

1.591 
l-185* 
0.8.5@ 
1.176’ 

14.29 
3.7&Z* 
1.7621 
2.644* 

7.166 
4.611 
0.796 0.747 
0.878” 0.883* 

1.591 
I.185 
0.85@ 0.888 
1.162*.- 1.114**** 

14.29 
3.762 
1.762 1.519 
2.2)4*.** x377*.** 

* Least squares fit failed to converge in single precision and was therefore computed in double 
precision. 

l * Calibration curve not acceptable. 

same. With the least squares fit for two parameters, the initial guesses of the ordinates 
are chosen as the logarithm of the high and low molecular weight limits for the 
packing material given by the manufacturer. For least squares fits with more than two 
parameters the choice of initial guesses is based on the calibration czzrve for the 
previous fit with one parameter less. In the natural cubic spline model the end con- 
ditions are chosen so that the second derivative is equal to zero at the end-points. 
which corresponds to a linear run-out* of the calibration curve in the end intervals. 
With this choice a somewhat higher X” value is obtained compared to those of the 
other models with the same number of parameters, but it also provides an acceptable 
calibration curve, where the other models fail, as in the calibration based on AI, with 
five parameters. 

The cubic spline model II represents a compromise between the natural cubic 
spline model and the polynomial model. For a least squares fit when the number of 
parameters is less or equal to four, the end conditions are chosen to provide a single 
polynomial representation. The mathematical equivalence to the polynomials is con- 
firmed by a comparison with the Legendre model. For numerical analysis, however, 
these models are not identical, since the cubic spline model requires a far smaller 
number of functional evaluations. When the number of parameters is greater than 
four, the second derivatives at the end intervals are chosen as parameters, besides the 
ordinates, which provides more flexibility in the end interval compared to the cubic 
spline model. However, some of the advantages of the natural cubic spline model will 

* If the second derivative approaches zero, the first derivate approaches a constant value. 



30 L. ANDERSSON 

be lost, and the least squares fits must in certain cases be computed in double preci- 
sion. Since the spline II model gives a less efficient convergence than the natural cubic 
spline model, the improvement in the X2 values can therefore not validate this model, 
and the natural cubic spline model is then the preferred choice. 

The alternative to the cubic spline as empirical model is the polynomial_ In 
least squares fits with polynomials of various degrees, the linear representation was 
the only one that gave a correct solution for computations done in single precision. 
Even when these analyses were extended to double precision, some of them failed to 
minimize X2, especially when a large number of parameters were used or only a small 
number of known molecular weight averages were available. This is a consequence of 
the strong parameter interaction inherent in the polynomial model. Since the coef- 
ficients in the polynomials are weighted by vi, the values of which are nearly the same 
over the elution range due to the normalization of the range by the internal standard, 
the estimate of one parameter is adversely influenced by that of another parameter. 
Even if this interdependence could be decreased by a suitable coordinate transfor- 
mation, an orthogonal representation could not be achieved. The ordinary polynomial 
representation is therefore not a good choice for the numerical analysis. 

A better representation for numerical analysis is provided by the Legendre 
polynomials. With this model an efficient convergence and weak parameter interac- 
tion were obtained_ However, complete independence of the parameters, which was 
expected, could not be obtained_ In theory, the value of any coefficient is independent 
of the value of any higher-order coefficients but is not independent of the values of the 
lower-order coefficients_ Each subsequent fit would therefore yield, in addition to the 
value of the next higher-order coefficient, the same values of the parameters as the 
previous fit with one parameter less. Each fit would then only be an estimation of a 
single parameter. Since complete independence of the coefficients could not be realiz- 
ed, some of the fits must be computed in double precision. One possible explanation 
of this behaviour is that the calibration curve approximation involves an indirect 
estimation of a function from a set of averages over the elution range, rather than the 
approximation of a function from a set of data points. However, as the model gives 
elIicient convergence and weak parameter interaction and provides an easy choice of 
the initial guesses for the parameters, it is a good representation of the calibration 
curve for numerical analysis. 

In the modified polynomial model no fit could be evaluated in single precision 
due to the strong parameter interaction inherent in the polynomial model. With X’ 
values higher than the minimum obtained in the Legendre model, the constant term 
in this model is not significant. The model must therefore be conlined to situations 
where an adequate number of standards are available, especially in the low-molecu- 
lar-weight region and to cases where the constant term is significant. Since this model 
has all the disadvantages of the ordinary polynomial model, a possible improvement 
would be to combine the Brst four Legendre polynomials with the constant term. 
Besides obtaining the advantages of the Legendre model, one could then determine 
the significance of the constant term by comparing the X2 value of the Legendre 
model for four and five parameters with the value obtained for this model. 

Of all models, the diffusion model has the unique advantage that the First two 
parameters can be related to the separation range. Therefore, if the model is to be an 
acceptable representation of the calibration curve, the estimated values of these param- 
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eters should coincide with the observed values for the elution range. This is con- 
firmed by the results. Furthermore, with an efficient convergence, low X2 values and 
minimal parameter interaction, the model can be considered as a good representation 
of the calibration curve. However, this is only true if a large number of standards are 
used for the calibration. The disadvantage of the model is the more complicated 
numerical treatment due to the inverse relationship of the elution volume and the 
molecular weight. 

The residuals between the experimental and the expected averages are also of 
value in elucidating the adequacy of the models. In Table III the residuals are given 
for the three main models. Since the other models are not significantly different from 
these models they can be excluded from the discussion_ With the residuals more or 
less randomly distributed around zero, the models seems to be an acceptable rep- 
resentation of the calibration curve based on M, and iv,+. More notable perhaps is 
the small difference between the residuals for the different models. Even if the contri- 
bution to the residuals due to the choice of the model is not negligible, this contri- 
bution is nevertheless small compared with the total variation_ The choice between 
the three models is therefore not critical, at least not when a larger number of well- 
characterized standards are available as in this case. 

The residuals are also influenced by the limited resolution in the separation 
process. An estimate of this contribution can be obtained from the quotient between 
the polydispersity from the GPC measurements and the polydispersity of the stan- 
dards. If the systematic error due to the limited resolution is not negligible, this 
quotient will be larger than one. From Table III the mean value of this quotient for 
the standards with the spline model has been computed to be 1.013. No statistical 
significance could be attributed to the measured deviation of 1.3 “/;; for only seven 
standards because of the much larger uncertainty in the known molecular weight 
averages. As the calibration is based on both M, and M,, it is possible that the 
calibration curve model could partly compensate for the increased polydispersity of 
the GPC method. However, this compensation was not realized for calibrations based 
on only )M, or M,. In Table IV the residuals are therefore also given for calibrations 
based on M, or Mw for the Spline I model. Since the choice of model is not conclusive. 
it is probably sufficient to evaluate the effect of the limited resolution for only the 
natural cubic spline model. For calibrations based on M,, the mean value of the 
quotient is 1.010 and for those based on only iM, a value of 1.023 is obtained_ The last 
value is somewhat less reliable since the X2 value for this fit was 2.195, which is 
perhaps too high to be acceptable. However, these two values are still approximately 
the same as for the calibrations based on both &fn and M,, and it is unlikely that the 
model has compensated for any excess of polydispersity in the GPC measurements. 
Thus, within the random uncertainties of the observed and expected molecular weight 
averages, no significant effect of the limited resolution of the GPC method could be 
determined. 

CONCLUSIONS 

For the GPC method based on a least squares approximation of the calibration 
curve to be valid, no systematic errors should be present. With the low resolution 
normally obtained for GPC measurements on supports having large particle sizes, 
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broader GPC distributions would be expected, even if the measurements are per- 
formed at low flow-rates. However, within the random uncertainty of the known 
molecular weight averages, no sign&ant effect of the limited resolution has been 
observed_ In principle, the choice of a mathematical representation of the calibration 
curve would also be expected to give a systematic error if the model is not an adequate 
description of the calibration curve. However, for the more generally applicable 
models such as the spline and the orthogonal polynomial models, where the errors 
due to the model could be made arbitrarily low by increasing the number of param- 
eters, this error is not realized. The small deviations of the residuals between these 
models also indicate that the choice of the model is not very important in this case. 
Nevertheless, in general, the natural cubic spline model is preferred because it can be 
extended to calibration of multicolumn sets, where a single polynomial may not be 
appropriate over the calibration range. Since the spline model also provides a linear 
runout in the end intervals, its use is more acceptable with the normally limited 
information available for the calibration. 

The number of parameters in the model was determined by minimizing the X’ 
value. The adequacy of this procedure is seen from the fact that for all fits where the 
procedure could be applied an acceptable calibration curve was obtained. With the 
inclusion of the total variances as weighting factors, the possibility of unequal reli- 
ability of the known molecular weight averages can be taken into account, resulting in 
a more correct use of both A4” and hi, for the calibration_ Since the total variance in 
this case is almost completely determined by the uncertainty in the known averages, 
the contribution of the GPC method to the total error in the calibration could be 
neglected. 

Many of the more common calibration methods used today are based on only 
a few known molecular weight averages. Even if these methods also correct for the 
limited resolution in the GPC separation, the dominating effect of the large un- 
certainty in the known averages is not taken into account. When the GPC calibration 
is based on a larger number of standards, a more correct non-linear calibration curve 
is obtained and the effect of the random errors in the known averages is reduced due 
to the smoothing of the least squares estimation. 

Although the calibration procedure in this study has been evaluated only for 
standards having broad molecular weight distributions, the use of those having 
narrow ranges is not ruled out. In fact, the only requirement of the procedure is that 
the known averages can mathematically be related to the molecular weight, in which 
case the molecular weights of narrow standards wrszzs peak elution volume represents 
the simplest relation. 
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